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Abstract. We investigate how the time evolution of different kinetic Ising models depends on
the initial conditions of the dynamics. To this end we consider the simultaneous evolution of
two identical systems subjected to the same thermal noise. We derive a master equation for
the time evolution of a joint probability distribution of the two systems. This equation is then
solved within an effective-field approach. By analysing the fixed points of the master equation
and their stability we identify regular and chaotic phases.

The question to what extent the time evolution of a physical system depends on its initial
conditions is one of the central questions in nonlinear dynamics that have lead to the
discovery of chaotic behaviour [1]. In more recent years, analogous concepts have been
applied to the stochastic time evolution of interacting systems with a macroscopic number
of degrees of freedom. Among the simplest of such many-body systems are kinetic Ising
models where the above question has been investigated by means of so-called ‘damage
spreading’ simulations [2, 3]. In these Monte Carlo simulations two identical systems
with different initial conditions are subjected to the same thermal noise, i.e. the same
random numbers are used in the Monte Carlo procedure. The differences in the microscopic
configurations of the two systems are then used to characterize the dynamic stability.

Later the name ‘damage spreading’ has also been applied to a different though related
type of investigation in which the two systems arenot identical but differ in the fact that
one or several spins in one of the copies are permanently fixed in one direction. Therefore,
the equilibrium properties of the two systems are different and the microscopic differences
between the two copies can be related to certain thermodynamic quantities [4, 5]. Note
that in this type of simulation the use of identical noise (i.e. random numbers) for the
two systems is not essential but only a convenient method to reduce the statistical error.
Whereas this second type of damage spreading is well understood and established as a
method to numerically calculate equilibrium correlation functions, much less is known
about the original problem of dynamic stability. In particular, there are no rigorous results
on the transition between regular and chaotic behaviour (called the ‘spreading transition’).
Grassberger [6] conjectured that the spreading transition falls into the universality class of
directed percolation if it does not coincide with another phase transition. This was supported
by high-precision numerical simulations for the Glauber Ising model [7] where the spreading
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transition temperature is slightly lower than the equilibrium critical temperature [8]. In
contrast, in the case of heat-bath dynamics the spreading temperature seems to coincide
with the equilibrium critical temperature [9, 10].

In this letter we, therefore, concentrate on the original question of the stability of the
stochastic dynamics in kinetic Ising models. To this end we investigate the time evolution
of two identical systems with different initial conditions which are subjected to the same
thermal noise. We derive a master equation for the joint probability distribution of the two
systems and solve it within an effective-field approach. By analysing the fixed points of this
equation we identify regular and chaotic phases. We find that the location of these phases
in the phase diagram is sensitive to the choice of the dynamic algorithm. In particular,
Glauber dynamics and heat-bath dynamics give very different dynamical phase diagrams.
For the Glauber Ising model, we discuss the relation of our results to directed percolation.

We consider two identical kinetic Ising models withN sites, described by the
Hamiltonian

H = −1

2

∑
ij

Jij SiSj − h
∑

i

Si (1)

whereSi is an Ising variable with the values±1. The dynamics is given by one of the two
following stochastic maps which describe Glauber dynamics

Si(t + 1) = sign{v[hi(t)] − 1
2 + Si(t)[ξi(t) − 1

2]} (2a)

and heat-bath dynamics

Si(t + 1) = sign{v[hi(t)] − ξi(t)} (2b)

with

v(h) = eh/T /(eh/T + e−h/T ). (3)

Herehi(t) = ∑
j Jij Sj (t) + h is the local magnetic field at sitei and (discretized) timet ,

ξi(t) ∈ [0, 1) is a random number which is identical for both systems, andT denotes the
temperature. Note that Glauber and heat-bath algorithm differ only in the way the random
numbers are used to update the configuration. The transitionprobabilities v are identical
for both algorithms.

In order to describe the simultaneous time evolution of two systemsH(1) and H(2)

with Ising spinsS
(1)
i and S

(2)
i we define a variableνi(t) with the valuesν = ++ for

S(1) = S(2) = 1, +− for S(1) = −S(2) = 1, −+ for −S(1) = S(2) = 1, and −− for
S(1) = S(2) = −1 which describes the state of a spin pair(S(1), S(2)). Since we are interested
in the time evolution not for a single sequence ofξi(t) but in ξ -averaged quantities, we
consider a whole ensemble of system pairs(H (1), H(2)) and define a probability distribution

P(ν1, . . . , νN , t) =
〈 ∑

νi (t)

∏
i

δνi ,νi (t)

〉
(4)

where 〈·〉 denotes the ensemble average. The time evolution ofP(ν1, . . . , νN , t) for a
single-spin dynamical algorithm as, for example, Glauber or heat-bath dynamics is given
by a master equation

d

dt
P (ν1, . . . , νN , t) = −

N∑
i=1

∑
µi 6=νi

P (ν1, . . . , νi, . . . , νN , t)w(νi → µi)

+
N∑

i=1

∑
µi 6=νi

P (ν1, . . . , µi, . . . , νN , t)w(µi → νi). (5)
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Herew(µi → νi) is the transition probability of the spin pair(S(1)
i , S

(2)
i ) from stateµ to ν.

It is a function of the local magnetic fieldsh(1)
i andh

(2)
i and can be calculated from (2a) or

(2b) for Glauber and heat-bath dynamics, respectively.
A complete solution of the master equation (5) is, of course, out of the question.

Therefore, one has to resort to approximation methods, the most obvious being mean-field
approximations. A natural way to construct a mean-field theory is usually to take the range
of the interactionJij to infinity at the beginning of the calculation. However, a mean-field
theory constructed this way does not show the chaotic behaviour found in the Glauber
Ising model at high temperatures. A more detailed analysis [11] shows that the absence
of any fluctuations in the infinite-range model is responsible for this discrepancy, since the
fluctuations are essential for the chaotic behaviour†.

We, therefore, develop a slightly more sophisticated effective-field approximation that
retains the fluctuations, although in a quite simplistic manner. The central idea is to treat the
fluctuations at different sites as statistically independent. This amounts to approximating the
probability distributionP(ν1, . . . , νN , t) by a product of identical single-site distributions
Pν ,

P(ν1, . . . , νN , t) =
N∏

i=1

Pνi
(t). (6)

Using this, the master equation (5) reduces to an equation of motion for the single-site
distributionPν ,

d

dt
Pν =

∑
µ6=ν

[−PνW(ν → µ) + PµW(µ → ν)] (7)

where

W(µ → ν) = 〈w(µ → ν)〉P (8)

is the transition probability averaged over the statesνi of all sites according to the distribution
Pν . Note that the average magnetizationsm(1) andm(2) of the two systems and the Hamming
distance (also called the damage)

D = 1

2N

N∑
i=1

|S(1)
i − S

(2)
i | (9)

which measures the distance between the two systems in phase space can be easily expressed
in terms ofP ,

m(1) = P++ + P+− − P−+ − P−− (10a)

m(2) = P++ − P+− + P−+ − P−− (10b)

D = P+− + P−+. (10c)

So far the considerations have been rather general; to be specific we will now concentrate
on a two-dimensional system on a hexagonal lattice with a nearest-neighbour interaction of
strengthJ . The external magnetic fieldh is set to zero. To solve the master equation (7) for
the single-site distributionP we first calculate the transition probabilitiesw(µ → ν) between
the states of a spin pair from one of the stochastic maps (2a) or (2b) and then average these
probabilities over the states of the three neighbouring sites of a certain reference site with
respect to the yet unknown distributionP . This yields the transfer ratesW(µ → ν) which

† Damage spreading in the infinite-rangeheat-bathIsing model gives reasonable results in qualitative agreement
with simulations of short-range models, see [12].
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enter (7). The calculations involved are quite tedious but straightforward, and they will be
presented in some detail elsewhere [11].

The resulting system of nonlinear equations for the variablesP++, P+−, P−+, andP−−
can first be used to calculate the thermodynamics. As expected, Glauber and heat-bath
dynamics give the same results. In particular, there is a ferromagnetic phase transition at a
temperatureTc determined by

tanh
3J

Tc
+ tanh

J

Tc
= 4

3
(11)

which givesTc/J ≈ 2.11. In the ferromagnetic phase the magnetization is given by

m2 =
3
4(tanh(3J/T ) + tanh(J/T )) − 1

3
4 tanh(J/T ) − 1

4 tanh(3J/T )
. (12)

We now discuss the time evolution of the Hamming distanceD between the two systems
which characterizes the stability of the dynamics. In contrast to the thermodynamics Glauber
and heat-bath algorithms give very different results for the Hamming distance. We first
consider the Glauber case.

The equation of motion of the Hamming distance can easily be derived from (7) and
(10c). In the paramagnetic phase we obtain, after some algebra,

d

dt
D = 1

2
(D − 3D2 + 2D3) tanh

3J

T
. (13)

This equation has three stationary solutions, i.e. fixed points,D∗, viz D∗
1 = 0 which

corresponds to the two systems being identical,D∗
2 = 1 whereS(1) = −S(2) for all sites,

andD∗
3 = 1

2 which corresponds to completely uncorrelated configurations. To investigate the
stability of these fixed points we linearize (13) ind = D −D∗. The linearized equation has
a solutiond ∝ eλt with λ1 = λ2 = 1

2 tanh(3J/T ) andλ3 = − 1
4 tanh(3J/T ). Consequently,

the only stable fixed point isD∗
3 = 1

2. Thus, in the paramagnetic phase the Glauber dynamics
is chaotic, since two systems, starting close together in phase space (D small initially) will
become separated exponentially fast with a Lyapunov exponentλ1, eventually reaching a
stationary state with an asymptotic Hamming distanceD = 1

2. Note, that the Lyapunov
exponentλ1 goes to zero forT → ∞. Therefore, the time it takes the systems to reach the
stationary state diverges withT → ∞, as has also been found in simulations [13].

We now turn to the ferromagnetic phase. In order to find the fixed points of the master
equation (7) we can set the magnetizations of both systems to their equilibrium values
(12) from the outset. In doing so we exclude, however, all phenomena connected with
the behaviour after a quench from high temperatures to temperatures belowTc. These
phenomena require an investigation of theearly time behaviour and will be analysed
elsewhere [11]. Form(1) = m(2) = m the equation of motion for the Hamming distance
reads
d

dt
D = 1

2
(D − 3D2 + 2D3) tanh

3J

T
− 3

4
m2

(
2D tanh

J

T
− D2 tanh

J

T
+ D2 tanh

3J

T

)
.

(14)

This equation has two fixed pointsD∗ in the interval [0, 1]. The first,D∗
1 = 0 exists for all

temperatures. The second fixed pointD∗
3 with 0 < D∗

3 < 1
2 exists only forT > Ts where

the spreading temperatureTs is determined by

3m2 tanh
J

Ts
= tanh

3J

Ts
. (15)
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Figure 1. Magnetizationm, asymptotic Hamming distanceD and Lyapunov exponentλ1 as
functions of temperature for the Glauber Ising model. BelowTc the curve forD has two
branches corresponding to the two systems being in the same or in different free energy valleys.

Figure 2. Magnetizationm and Lyapunov exponentλ1 as functions of temperature for the
heat-bath Ising model.

This givesTs ≈ 1.74 ≈ 0.82Tc. The stability analysis shows thatD∗
1 = 0 is stable

for T < Ts and unstable forT > Ts with a Lyapunov exponentλ1 = 1
2 tanh(3J/T ) −

3
2m2 tanh(J/T ). The fixed pointD∗

3 which exists only forT > Ts is always stable.
Consequently, we find that the Glauber dynamics is regular with the asymptotic Hamming
distance being zero for temperatures smaller than the spreading temperatureTs but chaotic
for T > Ts. Close to the spreading temperature the asymptotic Hamming distance increases
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linearly with T − Ts which corresponds to the spreading transition being of second order
with a critical exponentβ = 1. In contrast to the paramagnetic phase, where the two
systems become eventually completely uncorrelated, forTs < T < Tc the asymptotic
Hamming distanceD is always smaller than12 so that the two systems remain partially
correlated. Directly at the spreading point the term linear inD in (14) vanishes. For small
Hamming distances the equation of motion now reads dD/dt ∝ −D2 which gives a power-
law behaviourD(t) ∝ t−δ with δ = 1. Note that the values of the critical exponents, viz
β = δ = 1, are identical to the mean-field values of directed percolation.

Analogously, form(1) = −m(2) = m we find two fixed points,D∗
2 = 1 which exists

for all temperatures andD∗
4 with 1

2 < D∗
4 < 1 which exists forT > Ts only. D∗

2 is stable
for temperaturesT < Ts and unstable forT > Ts whereasD∗

4 is always stable if it exists.
The results for damage spreading in the Glauber Ising model within our effective-field
approximation are summarized in figure 1.

We now investigate the time evolution of the damage for the Ising model with heat-
bath dynamics (2b). After calculating the averaged transition ratesW(µ → ν) [11] and
inserting them into (7), we obtain the equation of motion for the Hamming distanceD. In
the paramagnetic phase it reads

d

dt
D = 3D

4

[
tanh

3J

T
+ tanh

J

T
− 4

3

]
− 3D2

4

[
tanh

3J

T
+ tanh

J

T

]
+D3

4

[
tanh

3J

T
+ 3 tanh

J

T

]
. (16)

This equation has only a single fixed point in the physical interval [0, 1], viz D∗
1 = 0†.

It is stable everywhere in the paramagnetic phase. Consequently, the asymptotic Hamming
distance is zero for all initial conditions, and the heat-bath Ising model does not show
chaotic behaviour forT > Tc. The Lyapunov exponent is given by

λ1 = 3

4
tanh

3J

T
+ 3

4
tanh

J

T
− 1 < 0.

The Lyapunov exponent goes to zero forT → Tc, and thus at the critical temperature we
again find for small Hamming distances dD/dt ∝ −D2 which givesD(t) ∝ t−1. Note that
the time decay of the damage is governednot by the exponentβ/zν (hereβ, z, andν are
the usual equilibrium critical exponents) with the mean-field value1

2 which characterizes
the decay of the magnetization. This is in agreement with numerical results [9] where the
decay of the damage is found to follow a power law with a new independent exponent‡.

In the ferromagnetic phase form(1) = m(2) = m the equation of motion is given by

d

dt
D = 3D

4

[
(1 + m2) tanh

3J

T
+ (1 − 3m2) tanh

J

T
− 4

3

]
−3D2

4

[
tanh

3J

T
+ tanh

J

T

]
+ D3

4

[
tanh

3J

T
+ 3 tanh

J

T

]
. (17)

Here we also obtain only one fixed pointD∗
1 = 0 which is stable for all temperatures. The

Lyapunov exponent is given by

λ1 = 3

4
(1 + m2) tanh

3J

T
+ 3

4
(1 − 3m2) tanh

J

T
− 1 < 0.

† In contrast to the Glauber dynamics, the heat-bath algorithm does not preserve the symmetry with respect to a
global flip of all spins. Therefore,D = 1 is not a fixed point here.
‡ A direct determination of the dynamical exponentz as in [9, 10] is not possible in our mean-field theory since
it lacks the notion of space. However, the combinationβ/zv can, of course, be determined from the decay of the
magnetization at the critical point.
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Thus, the behaviour is not chaotic and the asymptotic Hamming distance isD = 0.
Analogously, in the ferromagnetic phase form(1) = −m(2) = m we obtain a single stable
fixed pointD∗

2 = m. The results for damage spreading in the heat-bath Ising model within
our effective-field approximation are summarized in figure 2.

In conclusion, we studied the simultaneous time evolution of two kinetic Ising models
subjected to the same thermal noise by means of an effective field theory. For the heat-
bath dynamics we found that two only slightly different equilibrium configurations stay
close together in phase space for all times in both the paramagnetic and the ferromagnetic
phase, i.e. an equilibrated heat-bath Ising model does not show chaotic behaviour. For
the Glauber dynamics we found a richer behaviour. For all temperatures smaller than a
spreading temperatureTs the two equilibrium configurations stay together for all times.
For T > Ts, however, their distance increases exponentially which corresponds to chaotic
behaviour. In agreement with numerical simulations for Glauber dynamics the spreading
temperatureTs is not identical to the equilibrium critical temperature but slightly smaller.
We determined two critical exponents of the spreading transition, vizβ which characterizes
the dependence of the asymptotic damage on the reduced temperature andδ which governs
the time decay of the damage at the spreading point. The two exponents were found to be
identical to the mean-field values of directed percolation, in agreement with Grassberger’s
conjecture [6].

As with any mean-field theory we have, of course, to discuss in which parameter
region it correctly describes the physics of our system. Since we treated the fluctuations
in a very simplistic way, viz treating fluctuations at different sites as independent, our
effective-field theory will be reliable if the fluctuations are small, i.e. away from the critical
point. Therefore, our theory correctly describes the high- and low-temperature behaviour,
whereas it might misrepresent the details close to the critical point. It is nonetheless able
to distinguish the behaviour of heat-bath and Glauber dynamics close to the spreading
transition. Open questions are connected with the influence of external magnetic fields,
long-range interactions, and disorder. Some investigations along these lines are in progress.

This work was supported in part by the NSF under grant No DMR-95-10185, and by the
DFG under grant No Vo 659/1-1.
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